and 1055 "C resulted in deposition rates of **ca. 6.0,7.0,** and $13 \mu m/h$, respectively.

Specular reflectance FTIR of the Sic **coatings** deposited on Si(100), from DSCB, revealed only one strong absorption at ca. 790-800 cm^{-1} , which is indicative of the Si-C stretch. 15 No adsorption was observed between 1900 and 2200 cm-' or **2800** and 3100 cm-', which is characteristic of the Si-H and C-H infrared stretching frequencies, respectively.

Powder X-ray diffraction (XRD) was used to determine the relative crystallinity of the **coatings.** The powder XRD spectra of the coatings deposited from DSCB at 810, 945, and 1055 °C are shown relative to a piece of the "asreceived" Si(100) substrate (see Figure 2). The crystallization onset temperature is presumed to be <810 °C, since the β -SiC coating deposited at 810 °C exhibited a relatively intense SiC(111) peak (at a 2θ value of ca. 36°).¹⁶ In comparison, the powder XRD of the Sic films produced in previous studies, from the pyrolysis of I on Si(100), indicated a crystallization onset of >900 °C.⁷

The decomposition onset temperature of I1 was determined, on Si(100), by using a quadrupole mass spectrometer attached to the LPCVD system, **as** described previously.⁷ The mass peak intensity for $H_2(g)$ $(m/e = 2)$, which is the **initial** decomposition byproduct of 11, was monitored **as** a function of increasing substrate temperature. The results of this experiment indicated that I1 has a decomposition onset temperature of **680** "C on a Si(100) surface. This decomposition onset temperature of 680 "C for I1 is ca. *80* "C lower than that previously determined for I (ca. **760** 0C)7 in a similar experiment.

Pyrolysis byproducts produced from the decomposition of II at a maximum Si(100) surface temperature of ca. 850 \degree C were collected in a series of three liquid N_2 cooled traps for later identification. A minimum of four experiments were performed, at different substrate temperatures, to ensure an ample supply of gases for GCFTIR. The only noncondensable (at **77 K)** byproduct detected from 11 was $H_2(g)$, which is in contrast to both $H_2(g)$ and $CH_4(g)$ detected in previous studies of the pyrolysis of I.7 Information concerning the pyrolysis chemistry of compound 11 was obtained by systematically analyzing these trapped byproducts by using the quadrupole mass spectrometer attached to the LPCVD system. The series of cold traps were separately allowed to slowly warm to room temperature while continuously monitoring the m/e peak intensities from 1 to **200** amu. The first series of *mle* peaks detected were determined to be a mixture of $C_2H_r(g)$ hydrocarbons followed by a small amount of methylsilane. *As* the third and final trap approached room temperature, a series of *mle* peaks of much greater intensities emerged corresponding to a significant amount of dimethylsilane. These m/e peaks were followed by the final series of mass peaks detected which were attributed to 11. In contrast to the results from the previous pyrolysis studies of I,' no trimethylsilane or tetramethylsilane was detected. This suggests that the byproducts, from the pyrolysis of II, are not derived from simple recombination of radical species but rather the reault of discrete mechanistic decomposition routes, involving H transfer from Si to the adjacent -(CH,)- group **as** suggested by previous mechanistic $_{\rm studies.}$ 17, $^{\rm I4}$

Auger electron spectroscopy (AES) was used to determine the elemental composition of the coatings that were deposited from I1 at various Si(l00) substrate temperatures. The Si and C peak intensities (peak-to-peak heights) were averaged over the SiC(0001) and SiC(0001) faces of the single-crystal SiC Lelv¹⁹ standard, which was used as a reference during *each* **AES** determination. The coatings deposited from I1 at 810 "C contained *ca.* 2% (atomic) excess silicon, which is consistent with a significant amount of dimethylsilane that was detected from the pyrolysis of I1 at 1850 "C. Subsequent coatings deposited at *ca.* 945 and 1055 "C resulted in stoichiometric silicon carbide.

This is in contrast to the AES results of coatings produced using the derivative I of compound II.⁷ The films deposited from I in this previous study contained **as** much **as** 10% (atomic) excess carbon, **as** determined by *AES.*

Further investigations of 11, and derivatives thereof, **as** potential single-source CVD precursors to polycrystalline and single-crystal silicon carbide are currently underway. These investigations include electrical characterization of the **films** and **also** a detailed, quantitative evaluation of the pyrolysis byproduds produced **as** a function of varying both the substrate temperature and substrate material.

Acknowledgment. This work was supported by the Chemistry Division of the Office of Naval Research.

(19) Lely, J. A. *Ber. Dtsch. Keram. Ces.* **1955, 32, 229.**

Synthesis of Silver and Gold Nanoclusters within Microphase-Separated Diblock Copolymers

Y. Ng Cheong Chan and R. R. Schrock*

Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139

R. E. Cohen

Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Received November 4,1991

Diblock copolymers are known to self-assemble in films to yield microdomains (lamellae, cylinders, or spheres) whose sizes and spacings are typically in the range 100-1OOO *k'* The geometry of the microdomains and the domain sizes usually can be varied in a predictable manner by adjusting the length of each block and the total molecular weight² or by blending with homopolymer.³ To date, studies largely have concerned purely organic polymers, and the phase behavior of such materials is relatively well-understood. In this communication, we report the

⁽¹⁵⁾ Smith, A. L. *Spectrochim. Acta* **1960, 16, 87.**

⁽¹⁶⁾ JCPDS Powder Diffraction Files; Card No. 29-1129.
(17) Davidson, I. M. T.; Fenton, A.; Ijadi-Maghsoodi, S.; Scampton,
R. J.; Auner, N.; Grobe, J.; Tillman, N.; Barton, T. J. Organometallics **1984,3, 1593.**

⁽¹⁸⁾ Auner, N.; Davideon, I. M. T.; Ijadi-Maghsoodi, S.; Lawrence, F. T. *Organometallics* **1986,** *5,* **431.**

^{(1) (}a) Quirk, P. R.; Kinning, D. J.; Fetters, L. J. In *Compreheneioe Polymer Science;* **Allen, G., Bevington, J. C.,** *Aggarval,* **S. L., Eds.; Per***gamon Press: New York, 1989; Vol. 7. (b) Bates, F. S. Science 1991, 251, Ferry and Press: New York, 1989; Vol. 7. (b) Bates, F. S. Science 1991, 251,* **898. (c) Liebler, L.** *Macromolecules* **1980, 13, 1602.**

^{(2) (}a) Helfand, E.; Wasserman, Z. R. Macromolecules 1976, 9, 879. (b)
Helfand, E.; Wasserman, Z. R. Macromolecules 1978, 11, 960. (c) Helfand, E.; Wasserman, Z. R. Macromolecules 1980, 13, 994. (d) Hadziioannou, G.; Skoulios, A. Macromolecules 1982, 15, 258. (e) Hashimoto,
T.; Tanaka, H.; Hasegawa, H. Macromolecules 1985, 18, 1864.
(3) (a) Kinning, D. J.; Thomas, E. L.; Fetters, L. J. J. Chem. Phys.
1989, 90, 5806. (b) Thom

^{1990,62,686.}

 $[NORPHOS]_{20}[MTD]_{300}$

synthesis of diblock copolymers having metal complexes attached selectively to one block, microphase separation in solvent-case films, and decomposition of the confined metal complexes to yield metal nanoclusters.⁴ Related studies concerned with the synthesis of semiconductor clusters within microphase-separated materials prepared by ring-opening metathesis polymerization (ROMP) have also appeared recently.⁵

A $\mathrm{[NORPHOS]}_{20}[\mathrm{MTD}]_{300}^6$ diblock copolymer has been synthesized on a 0.5-g scale by adding **300** equiv of MTD followed by 20 equiv of NORPHOS to Mo- $(CHCMe₂Ph)(NAr)(O-t-Bu)₂$ (Ar = 2,6-C₆H₃-i-Pr₂)⁷ as shown in Scheme I. The living polymer is then capped with a neopentylidene group in a Wittig-like reaction with pivaldehyde and isolated quantitatively as an off-white solid by precipitation in pentane. 'H NMR analysis of the block copolymer in C_6D_6 showed the composition to be that expected (15% by weight of poly-NORPHOS), while gel permeation chromatography yielded a polydispersity index of 1.08 (refractometer and UV detection) with $M_n = 81000$ with respect to polystyrene standards $(M_n$ (theory) = 61 *500).*

Silver and gold were introduced into the polymer in the
rm of Ag(COD)(Hfacac)⁸ or Au(PMe₃)Me.⁹ One form of Ag(COD)(Hfacac)⁸ or Au(PMe₃)Me.⁹ equivalent of metal complex per phosphine was added to the block copolymers in benzene solution, **as** shown in **eqs 1** and 2. Solutions that contain approximately 3 **wt** %

$$
[NORPHOS]_{20}[MTD]_{300} \xrightarrow[40Ag(Hface)(COD)]{40COD} [Ag_2(Hface)_2(NORPHOS)]_{20}[MTD]_{300} (1)
$$

\n
$$
[NORPHOS]_{20}[MTD]_{300} \xrightarrow[40Au(PMe_3)(Me)]{40Au(PMe_3)(Me)}
$$

\n
$$
[Au_2(Me)_2(NORPHOS)]_{20}[MTD]_{300} (2)
$$

(6) MTD = methyltetracyclododene (Scheme I), NORPHOS ⁼ra- cemic **2-exo-3-endo-bis(diphenylphosphino)bicyclo[2.2.l]heptene** (Scheme I), $\text{COD} = 1.5$ -cyclooctadiene, and Hfacac = hexafluoroacetylacetonate.

(7) (a) Schrock, R. R. Ace. *Chem. Res.* 1990,24,158. (b) Schrock, R. R.; Murdzek, J. S.; Bazan, **G.** C.; Robbins, J.; DiMare, M.; O'Regan, M. J. Am. Chem. Soc. 1990, 112, 3875.

(8) (a) Partenheimer, **W.;** Johnson, E. H. Inorg. *Synth.* 1976,16,117. (b) Partenheimer, W.; Johnson, E. H. Inorg. *Chem.* 1973,12,1274.

(9) Schmidbaur, H.; Schiotani, **A.** *Chem. Ber.* 1971,104,2821.

Figure 1. Electron micrograph of Ag-1 (bar $= 1000$ Å).

Figure 2. Electron micrograph of Au-1 (bar = 1000 Å).

Table I. Data for Polymers Containing Gold and Silver Complexes Bound to Poly-NORPHOS

polym	M-block, ^{a} wt $\%$	metal, wt %	morphology ^b			
$Ag-1$	28	5.9	lamellar			
$Au-1$	25	11	cylindrical			
	20	3.7	cylindrical			
$Ag-2^c$ Au-2 ^d	8.8	3.9	spherical			

 a Refers to the metal-containing block. b Observed by TEM. c Blend of 70 wt % Ag-1' with $[MTD]_{50}$.¹⁰ d Blend of 34 wt % Au-1 with $[MTD]_{50}$.

polymer (2 equiv of the Ag or Au complexes per NOR-PHOS) were allowed to evaporate slowly in polyethylene cups in a nitrogen glovebox in the dark over **5-7** days. Silver binds rapidly and quantitatively to triphenylphosphine upon loss of COD ⁸ we presume the same is true in the case of poly-NORPHOS. In contrast, although phosphine exchange on gold is fast? binding of gold to NORPHOS is not thermodynamically favored. However, it is driven to completion during film casting as the PMe₃ escapes. **Films** approximately 0.4 mm thick that have been prepared in this manner are hard, transparent, and paleyellow due to residual $Mo(O)(NAr)(O-t-Bu)₂$.⁷ Films that contain silver also have a color that is characteristic of traces of silver clusters (100-500 **A)** being present, as

⁽⁴⁾ For recent articles on synthesis of metal cluster/polymer com- posites **see:** (a) Andrew, M. P.; Ozin, G. **A.** *Chem. Mater.* 1989,1,174. (b) Andres, R. P.; Averback, R. S.; Brown, W. L.; Brus, L. E.; Goddard, W. A. III; Kaldor, A.; Louie, S. G.; Moscovits, M.; Peercy, P. S.; Riley, S. J.; Siegel, R. W.; Spaepen, F.; Wang, Y. J. Mater. Res. 1989, 4, 704.
(c) Klabunde, K. J.; Habdas, J.; Cardenas-Trivino, G. Chem. Mater. 1989, 1, 1991,113,7758.

^{(5) (}a) Sankaran, **V.;** Cummins, C. C.; Schrock, **R.** R.; Cohen, **R.** E.; Silbey, R. J. J. *Am. Chem. SOC.* 1990,112,6858. (b) Sankaran, V.; Cohen, R. E.; Cummins, C. C.; Schrock, R. R. *Macromolecules* 1991, 24, 6664. (c)
Cummins, C. C.; Beachy, M. D.; Schrock, R. R.; Vale, M. G.; Sankaran, V.; Cohen, R. E. *Chem. Mater.* 1991,3, 1153. (d) See also: Moller, M. *Synth. Met.* **1991**, 41-43, 1159.
(6) MTD = methyltetracyclododecene (Scheme I), NORPHOS = ra-

Figure 3. Electron micrograph of **Ag-1** after thermal treatment $(bar = 1000 \text{ Å})$.

confirmed by TEM (transmission electron microscopy on a JOEL 200 CX microscope operating at 200 kV). We ascribe the presence of these relatively large clusters to decomposition of unreacted Ag(COD)(Hfacac) during film casting.

A film made from $[Ag_2(Hface)_2(NORMALTheta)_{20}$ - $[MTD]_{300}$ (Ag-1) exhibits lamellar morphology as shown by TEM of a **200-300-A** thick section (Figure 1). The silver-containing microdomains are about 90 **A** thick, and the interdomain spacing is approximately 250 Å. However, a film made from $[Au_2(Me)_2(NORPHOS)]_{20}[MTD]_{300}$ (Au-1) shows cylindrical morphology with a hexagonal packing of the metal-complex-containing cylinders (Figure 2). The diameter of the cylinders is approximately 100 **A** and the interdomain spacing approximately **300 A.** In both cases relatively long-range order could be observed. The weight percent of the metal-containing block and weight percent of metal in the polymer film are given in Table I.

Thin sections **(200-300 A)** of Ag-1 and Awl films were placed on copper grids and heated to 150 °C in air for 15 and 48 h, respectively. The TEM micrographs (Figures 3 and **4)** confirm that small clusters have formed which reside largely within the original microdomains. Silver cluster sizes were in the range 20-100 **A,** and gold cluster sizes in the range 15-40 **A.** Rings ascribable to polycrystalline metal clusters can be observed in both cases by electron diffraction. Some gold migrated to the surface of the film to form large clusters that continued to grow upon prolonged heating of the sample. Heating of bulk samples in a Schlenck tube in vacuo or in air **also** yielded relatively large clusters (>100 Å) that were not confined to the **original** metal-containing microdomains. The larger clusters were found in higher concentration near the bulk polymer surface. At this stage we are uncertain why relatively large gold clusters near or on the polymer surface form relatively quickly upon heating bulk polymer samples.

Blending of Ag-1^{'10} and Au-1 with $[MTD]_{50}$ homopolymer $(M_n = 9200, \text{ PDI} = 1.04)$ causes a change in mi-

Figure 4. Electron micrograph of **Au-1** after thermal treatment $(bar = 500 \text{ Å})$.

Figure 5. Electron micrograph of Ag-2 (bar = 1000 Å).

Figure 6. EIectron micrograph of **Au-2** (bar = **10o0** A).

crodomain structure **(see** Table I) **as** a consequence of the reduced weight fraction of the metal-containing block. The TEM micrographs of these blends (Ag-2 and Au-2, re-

⁽¹⁰⁾ Ag-l' is **an** independently prepared sample having the composition $[NORPHOS(Ag)_2(Hface)_2]_2(MTD)_3$ ₀₀. After approximately 4 months in air, the sample of $[NORPHOS]_{20}[MTD]_{300}$ that was used to prepare Ag-1' was shown by GPC (vs polystyrene standards) to have $M_n = 63000$ and PDI = 1.10. After 4 months in air, the sample of [NOR--PHOS]₂₀[MTD]₃₀₀ that was used to prepare Ag-1 was found to have M_n = 72000 and PDI = 1.2.

spectively) are shown in Figures *5* and **6,** respectively. Cylinders with short-range order and disordered spheres 11 were observed in which the metal-containing domain is about **100 A** in diameter.

Further studies are targeted toward understanding the decomposition process and controlling cluster growth in such polymer films. Related **studiea** involving the synthesis of palladium and platinum nanoclusters within microphase-separated diblock Copolymers will be reported in **full** paper format.¹²

Acknowledgment. We thank the National Science Foundation (Grant **DMR 87-19217)** and Nippon-Zeon for financial support.

Synthesis of ZnS and CdS within ROMP Block Copolymer Microdomains

C. C. Cummins, R. R. Schrock,* and R. E. Cohen

Departments of Chemistry and Chemical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Received November 5,1991

We have initiated a project **aimed** toward the synthesis of semiconductor clusters of a predictable size within microdomains in **films** of block copolymers prepared by ring-opening metathesis polymerization $(ROMP).^{1-3}$ For example diamide complexes that contain Sn(IV), Sn(II), or Pb(I1) have been prepared from diaminonorbornenes (amino NBE, $R = t$ -Bu or SiMe₃).² We report here an

approach that involves norbomenes that *can* bind metals in a dative fashion through **sulfur** or oxygen donors. This approach allows block copolymers to be prepared and characterized before the metal is attached and, if the binding constant is large enough, for the metal to be added in stoichiometric **amounts** to the polymer in solution before casting a film and thereby assembling a microphase-separated material. A related approach involving phosphine-derivatized norbomenes **has** been used to prepare Ag and Au clusters.⁴

Homopolymers of **7-0,** 7-5, and **5-O5** and block copolymers with MTD (methyltetracyclododecene) were

a Subscripts refer to degree of polymerization. A **known** quantity of the first block for each diblock was removed for GPC analysis. ^bValues are given with respect to polystyrene standards and should be multiplied by 109. **e** Data obtained using a refractometer are listed above those obtained using a UV-vis detector. d Molecular weight is calculated on the basis of equivalents employed (multiply by 109). **e** Percentages refer to weight ratio of 7-0, 7-5, or *5-0* block to diblock; the calculated weight ratio is printed above that obtained by **'H** NMR.

Table II. Binding Constants $(M^{-1}; 25 \text{ °C}, C_6D_4)^o$

	ZnPh ₂	$Cd[3,5-C_6H_3(CF_3)_2]_2$
	113 (13)	
$(7-{\rm O})_{100}^{b}$ $(7-{\rm S})_{45}^{b}$	144 (16)	
$7-S$		81(5)
DME ^c	>500	>100

^aNumbers in parentheses represent 1 standard deviation. $^{\circ}$ Subscript refers to degree of polymerization. $^{\circ}$ 1,2-Dimethoxyethane.

Table 111. Percent Complexed Metal

	$K(M^{-1})$			
$[MR2]$ ^a	100	200	500	
0.03	57	67	77	
0.06	67	75	83	
0.12	75	82	88	

^{*a*} [MR₂] refers to total concentration (mol/L) of metal. The calculation **assumes** an equimolar ratio of binding sites to metal.

prepared employing $Mo(CH-t-Bu)(NAr)(O-t-Bu)₂$ as the initiator in toluene as described elsewhere.^{6,7} All polymerizations were terminated by adding benzaldehyde after the second monomer had been consumed. The polymers were characterized by GPC, 'H NMR, and (vide infra) **TEM.** *All* polydispersitiea **are** low (Table I), and 'H *NMR* integration *confirms* that the block-teblock ratio of repeat units is that expected of a well-behaved living polymerization. Homopolymers derived from **7-0,** 7-5, and **6-0** have T_g values of ca. 45 °C, whereas MTD homopolymer exhibits a T_g of ca. 210 °C.

Binding constants for ZnPh_2 binding to $(7-0)_{100}$ and $(7-S)_{45}$ and Cd $[3,5-C_6H_3(CF_3)_2]_2$ binding to 7-S have been determined by ¹H NMR methods (Table II).⁸⁻¹⁰ These data reflect the diminished Lewis acidity of Cd relative to Zn (if we assume that binding to 7-5 is approximately

-
- (10) Perlmutter-Hayman, B. Acc. *Chem. Res.* 1986,19,90.

⁽¹¹⁾ The elongated **shape** of the spherical microdomains is believed to

be caused by shear forces during microtoming.

(12) Ng Cheong Chan, Y.; Craig, G. S. W.; Schrock, R. R.; Cohen, R.
E., manuscript in preparation. (b) Presented at the New York ACS meeting, Auguat, 1991; see: *Polym. Prep.* 1991, 32, 128.

⁽¹⁾ Sankaran, V.; Cummine, C. C.; Schrock, R. R; Cohen, R. E.; Silbey, R. J. *J. Am. Chem. SOC.* 1990,112,6868.

⁽²⁾ Cummins, C. C.; Beachy, M. D.; Schrock, R. R.; Vale, M. G.; **San-**

karan, V.; Cohen, R. E. *Chem. Mater.* 1991,3,1153. (3) Sankaran, V.; Cohen, R. E.; Cummins, C. C.; Schrock, R. R. Mac-*romolecules* 1991,24,6664.

⁽⁴⁾ Chan, Y. N. C.; Schrock, R. R.; Cohen, R. E. *Chem. Mater.,* pre-

vious paper in this issue.

(5) 7-O was prepared from the diol (see ref 2) via deprotonation (with

butyllithium) and methylation (with methyl iodide). 7-S was synthesized

from the ditosylate² by reaction with NaSCH₃. alkylation of the **lithium** salt of **endo-2-(hydrorymethyl)norbomene** with 2-methoxyethyl bromide. The monomers were characterized by proton and carbon **NMR.**

⁽⁶⁾ Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, (6) Schrock, R. R.; Murdzek, J. S.; Bazan, G.
M.; O'Regan, M. J. *Am. Soc.* **1990**, *112*, 3875.

⁽⁷⁾ **Bazan, G. C.; Oskam, J. H.; Cho, H.-N.; Park, L. Y.; Schrock, R. R.** *J. Am. Chem. Soc.* **1991,** *113***, 6899.**

⁽⁸⁾ Connors, K. A. Binding *Comtants;* Wiley: New York, 1987, **(9)** Long, J. R.; Drago, R. S. J. *Chem. Educ.* 1982, 69, 1037.